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Abstract 
In the mid-20th century fuzzy set theory and fuzzy logic developed by Lotfi A. Zadeh, emerged as 
powerful tools for modeling and reasoning under uncertainty, imprecision, and vagueness—features 
commonly encountered in real-world systems. This review provides a comprehensive overview of the 
theoretical foundations, key developments, and modern applications of fuzzy sets and fuzzy logic. It 
highlights seminal contributions, such as hesitant fuzzy sets, interval-valued intuitionistic fuzzy systems, 
and type-2 fuzzy logic, which have significantly enhanced the expressive power of classical fuzzy 
models. Recent advances, including the use of entropy-based decision-making methods, enhanced 
Karnik-Mendel algorithms for type-2 fuzzy sets, and integration with deep learning frameworks for 
uncertainty-aware forecasting, are also discussed. By surveying both foundational theories and 
contemporary innovations, this review underscores the continued relevance and adaptability of fuzzy 
logic in diverse fields such as decision-making, artificial intelligence, control systems, and data analysis. 
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1. Introduction  
Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965, has significantly influenced various 
domains involving uncertainty and imprecision, including control systems, pattern recognition, 
decision-making, artificial intelligence, and more. Unlike classical (crisp) set theory where an 
element either belongs or does not belong to a set, fuzzy sets allow partial membership, 
providing a powerful mathematical tool for modeling vagueness. Fuzzy logic, developed as an 
extension of fuzzy set theory, forms the basis of many reasoning and control mechanisms, 
particularly in expert systems and intelligent applications. It generalizes classical logic to 
handle the concept of partial truth. In this review, we explore foundational aspects, 
mathematical structure, major developments, and applications of fuzzy sets and fuzzy logic, 
referencing significant contributions from peer-reviewed journals such as: 
• IEEE Transactions on Fuzzy Systems 
• Fuzzy Sets and Systems (Elsevier) 
• International Journal of Approximate Reasoning 
• Information Sciences (Elsevier) 
• Applied Soft Computing 
 
Over the decades, fuzzy set theory has evolved significantly, giving rise to various extensions 
and applications in decision-making, control systems, forecasting, and artificial intelligence. 
For instance, Pan and Wu (2023) [11] proposed a novel hesitant fuzzy decision-making method, 
utilizing entropy and similarity measures to effectively model situations where decision-
makers hesitate among several values. Such approaches reflect the increasing need for more 
flexible decision-support tools in complex environments. Advancements in type-2 fuzzy sets 
further enhanced the capability of fuzzy systems to handle uncertainty. The enhanced Karnik-
Mendel algorithms, as improved by Karnik and Mendel (2023) [12], provide a more accurate 
and computationally efficient method for centroid computation in general type-2 fuzzy sets, 
facilitating their use in practical engineering and control applications. In the context of multi-
criteria group decision-making, Zhou and Zhang (2023) [13] developed a methodology based on 
interval-valued intuitionistic fuzzy sets integrated with the CoCoSo method, enabling 
comprehensive and balanced evaluations under uncertainty. This reflects the growing  
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emphasis on robust aggregation strategies in group settings. 
Fuzzy logic has also found synergy with deep learning. Liu 
and Li (2024) [14] proposed a deep fuzzy neural network model 
for time series forecasting that incorporates uncertainty 
quantification, showcasing how fuzzy principles can enhance 
the interpretability and reliability of neural systems, Herrera 
et al. (2011) [4] studied Genetic fuzzy systems: taxonomy, 
current research trends and prospects Fuzzy Sets and Systems, 
Zadeh (2010) [5], discussed From computing with numbers to 
computing with words, Annals of the New York Academy of 
Sciences and Pedrycz & Gomide (2020) [6] proposed Fuzzy 
systems and data analytics: ideas and tools, IEEE 
Transactions on Fuzzy Systems. These ongoing innovations 
underscore the enduring relevance and adaptability of fuzzy 
set theory. As uncertainty continues to characterize many 
domains—from finance to healthcare, robotics to climate 
modeling—fuzzy logic remains a vital and evolving tool for 
modeling human reasoning and complex systems. 
 
2. Fuzzy Logic 
2.1 Foundations of Fuzzy Logic 
Fuzzy logic extends Boolean logic by allowing truth values 
between 0 and 1. In classical propositional logic: [Zadeh, L. 
A. (1965)] [1] 
• "True" is represented by 1 
• "False" by 0 

 
In fuzzy logic, truth values lie in the interval [0, 1] [0, 1] [0, 
1], enabling reasoning with degrees of truth. 
 
2.2 Fuzzy Propositions and Connectives [Klir, G. J., & 
Yuan, B. (1995)] [31] 
• Negation: ¬A=1−μA 
• Conjunction: A∧B = min(μA,μB) 
• Disjunction: A∨B=max(μA,μB) 
• These are generalizations of classical logical connectives, 

with alternative formulations provided by t-norms and t-
conorms for conjunction and disjunction, respectively. 
 

2.3 Fuzzy Inference Systems (FIS) 
Fuzzy inference systems are rule-based systems using fuzzy 
logic for decision-making. Two widely used models are 
[Mamdani, E. H., & Assilian, S. (1975) [25], Sugeno, M. 
(1985)] [26]: 
• Mamdani-type FIS: Uses fuzzy sets for both 

antecedents and consequents. 
• Sugeno-type FIS: Uses crisp outputs, often linear 

functions in the consequent part. 
 
These systems are foundational in control systems, expert 
systems, and pattern recognition. 
 
2.4. Extensions and Generalizations 
Several advanced forms of fuzzy sets have been developed to 
handle increased uncertainty [Mendel, J. M., & John, R. I. 
(2002)] [16] 
• Type-2 Fuzzy Sets: Membership values themselves are 

fuzzy, allowing for modeling higher-order uncertainty. 
• Intuitionistic Fuzzy Sets [Atanassov, K. (1986)] [27] 

Introduced by Atanassov, these sets are characterized by 
degrees of membership, non-membership, and hesitation. 

• Interval-Valued Fuzzy Sets [Turksen, I. B. (1986)] [28] 
embership functions are not single values but intervals, 
improving flexibility in uncertain data modeling. 

3. Classical vs Fuzzy Sets 
3.1 Classical vs Fuzzy Membership 
In classical set theory, an element x either belongs to a set A 
(i.e., x∈A) or not (i.e., x∉A). This is captured by a 
characteristic function [Halmos, P. R. (1960)] [32] 
 

 
 
In fuzzy set theory [Zadeh, L. A. (1965)] [1], membership is 
described by a membership function μA: X→ [0, 1], where μA: 
(x) represents the degree of membership of x in A. 
 
3.2 Membership Functions 
Membership functions [Ross, T. J. (2010)] [43] are essential in 
defining fuzzy sets. They determine how each element in the 
universe is mapped to a value between 0 and 1. 
Common forms of membership functions include 
• Triangular 
• Trapezoidal 
• Gaussian 
• Sigmoidal 
 
These shapes influence the system's performance in 
applications such as fuzzy inference systems and pattern 
recognition. 
 
3.3 Operations on Fuzzy Sets 
Analogous to classical set operations, fuzzy sets support the 
following operations [Klir, G. J., & Yuan, B. (1995)] [31] 
• Union:  
• Intersection:  

• Complement:   
 
These definitions allow for gradual transitions between full 
membership and non-membership, providing better models of 
real-world uncertainty than binary classification. 
 
4. Trends in Fuzzy Sets and Fuzzy Logic 
Over the past few decades, Fuzzy Set Theory and Fuzzy 
Logic have evolved significantly, influencing a wide range of 
scientific, industrial, and engineering domains. Key trends 
observed in recent literature and applications are summarized 
below: 
 
4.1 Integration with Soft Computing Techniques 
One of the dominant trends is the integration of fuzzy logic 
with other soft computing paradigms, such as: 
• Neuro-Fuzzy Systems: For adaptive learning and pattern 

recognition [Jang, 1993] [8]. 
• Genetic Algorithms (Fuzzy-GA hybrids): For 

optimized rule extraction and parameter tuning. 
• Rough Sets and Evolutionary Computation: For 

handling vagueness and optimizing fuzzy membership 
functions. 

 
4.2 Fuzzy Logic in Artificial Intelligence and Machine 
Learning 
Fuzzy logic is increasingly used to enhance interpretability 
and reasoning under uncertainty in: 
• Explainable AI (XAI) systems [Angelov & Sotirov, 

2020] [17]. 
• Decision support systems where rule-based reasoning is 

needed. 
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• Reinforcement learning, incorporating fuzzy controllers 
to handle continuous action spaces. 

 
4.3 Applications in Control Systems and Automation 
Fuzzy controllers continue to play a vital role in: 
• Industrial automation (e.g., motor control, HVAC 

systems). 
• Robotics (especially in navigation and obstacle 

avoidance). 
• Smart grid and energy management systems [Mendel, 

2017] [19]. 
 
4.4 Use in Data Mining and Knowledge Discovery 
Fuzzy logic facilitates 
• Handling imprecise and uncertain data in clustering, 

classification, and association rule mining. 
• Development of Fuzzy Decision Trees and Fuzzy Rule-

Based Systems (FRBS) for better model generalization 
[Pal & Mitra, 2004] [56]. 

 
4.5 Expansion into IoT and Edge Computing 
Fuzzy inference systems are being integrated into lightweight 
edge devices to make intelligent decisions under uncertain or 
incomplete sensor data in: 
• Smart homes and environments. 
• Health monitoring and wearables. 
• Environmental sensing [Zadeh, 2011; Kim et al., 2020] 

[21, 22]. 
 
4.6 Advances in Type-2 Fuzzy Sets 
Type-2 fuzzy sets, capable of modeling higher levels of 
uncertainty, are gaining traction in: 
 Real-time decision-making. 
 Image processing and bioinformatics. 
 Dynamic environments where data variability is 

significant [Mendel & John, 2002] [16]. 
 
4.7 Development of Fuzzy Software Tools and Libraries 
Open-source and proprietary tools like MATLAB Fuzzy 
Logic Toolbox, Scikit-Fuzzy (Python), and Wolfram 
Mathematica have made fuzzy modeling more accessible, 
fostering broader academic and industrial use [Zimmermann, 
2010] [30]. 
 
4.8 Theoretical Developments 
New mathematical foundations are being explored, including: 
• Generalized and intuitionistic fuzzy sets. 
• Fuzzy topology and fuzzy algebra. 
• Improvements in defuzzification methods and rule 

aggregation techniques [Dubois & Prade, 1980] [7]. 
 
5. Applications of Fuzzy Sets and Logic 
5.1 Control Systems 
Fuzzy control is a well-established application. Unlike 
traditional controllers, fuzzy controllers do not require exact 
mathematical models. Notable examples include [Ross, T.J. 
(2010)] [43].  
• Temperature control 
• Washing machines 
• Automotive systems (e.g., anti-lock braking) 
 
5.2 Decision-Making 
Fuzzy Multi-Criteria Decision Making (FMCDM) has been 
widely applied in: 

• Supply chain management 
• Project evaluation 
• Healthcare systems 
 
For instance, [Bellman and Zadeh (1970)] [62] proposed fuzzy 
decision-making models under uncertainty. 
 
5.3 Image Processing and Pattern Recognition 
Fuzzy clustering algorithms like Fuzzy C-Means (Bezdek, 
1981) [63] allow overlapping cluster memberships, enhancing 
performance in: 
• Medical imaging 
• Remote sensing 
• Object recognition 
 
5.4 Natural Language Processing (NLP) [Zadeh, L. A. 
(1996)] [33] 
Fuzzy logic contributes to linguistic modeling in NLP, 
particularly in sentiment analysis and meaning representation 
where words convey vague meanings. 
 
5.5 Artificial Intelligence [Jang, J.-S. R., Sun, C.-T., & 
Mizutani, E. (1997)] [34].  
In AI systems, fuzzy logic has been integrated with neural 
networks, genetic algorithms, and expert systems to handle 
uncertain and imprecise inputs. 
 
6. Recent Developments 
Recent research has focused on: 
• Neuro-fuzzy systems [Nauck, D., & Kruse, R. (1999)] 

[35] Combining ANN with fuzzy logic for adaptive 
control. 

• Fuzzy deep learning [Mehta, B., & Rani, R. (2019)] [36] 
Embedding fuzziness in deep learning layers to improve 
generalization and interpretability. 

• Fuzzy optimization [Herrera, F., & Verdegay, J. L. 
(1995)] [55]: Applying fuzzy set theory in multi-objective 
and constrained optimization problems. 

 
Let us discusses common application i.e. 
 
7 Fuzzy Logic Control of Room Temperature 
Scenario [Driankov, D., Hellendoorn, H., & Reinfrank, M. 
(1996)] [38]: Imagine we want to build a fuzzy logic controller 
to regulate the temperature of a room using a heater. The 
controller will adjust the heater’s power based on the room’s 
current temperature and the desired temperature (setpoint). 
 
7.1 Fuzzy Variables and Membership Functions 
• Temperature Error (Error) [Ross, T.J. (2010)] 

[43]: The difference between the desired temperature and 
the actual temperature. We’ll define fuzzy sets for this 
variable: 

• Negative (N): Temperature is significantly below the 
setpoint. 

• Zero (Z): Temperature is close to the setpoint. 
• Positive § [Zimmermann, H.-J. (2001)] [9]: Temperature 

is significantly above the setpoint. 
• Rate of Change of Temperature (Rate) [Cox, E. 

(1994)] [45]: How quickly the temperature is changing. 
We’ll define fuzzy sets for this variable: 

• Negative (N): Temperature is decreasing. 
• Zero (Z): Temperature is not changing much. 
• Positive § [Passino, K. M., & Yurkovich, S. (1998)] [47] 
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Temperature is increasing. 
• Heater Power (Power) [Lee, C. C. (1990)] [48]: The 

output of the controller, determining how much power to 
apply to the heater. We’ll define fuzzy sets for this 
variable: 

• Low (L): Apply low power to the heater. 
• Medium (M): Apply medium power to the heater. 
• High (H) [Driankov et al., 1996] [44]: Apply high power 

to the heater. 
 
Example showing various forms of membership function  
Fuzzy Variable [Ross, 2010] [43.] 
• Room Temperature: The current temperature of the 

room (in degrees Celsius). 
 

Fuzzy Set [Zadeh, L. A. (1975)] [42] 
• Acceptable: Represents the degree to which the room 

temperature is considered acceptable, with a strong 
preference for temperatures at or below 25 degrees 
Celsius. 

 
Membership Function [Ross, T. J. (2010)] [43] 
We can use a few different types of membership functions to 
represent this concept. A simple one is a trapezoidal 

membership function 
 
1. Trapezoidal Membership Function [Zimmermann, H.-

J. (2001)] [9] 
• temp <= 20: Membership = 1 (Completely Acceptable) 
• temp < 25: Membership decreases linearly from 1 to 0 
• temp >= 25: Membership = 0 (Completely 

Unacceptable) let’s convert the membership function for 
“Acceptable Room Temperature (Max 25)” into Gaussian 
and Sigmoidal forms. Gaussian Membership Function 

 
2. The Gaussian Membership Function becomes 

[Driankov, D., Hellendoorn, H., & Reinfrank, M. 
(1996)] [38] 

 

 
  
Where 

•  is the input value (room temperature)? 

•  is the center (mean) of the Gaussian curve (the 
temperature with the highest membership). 

 

 
 

Fig 1: Geometrical Representation of Guassian Membership function. 
 

3. Sigmoidal Membership Function 
 

 
 
To represent ‘Acceptable Room Temperature (Max 25)’, we 

want a sigmoidal function, Let us take c = 23 and . 
The decreasing Sigmoidal Membership Function becomes:  
 

 

 

  
 

Fig 2 (a)        Fig 2 (b) 
Geometrical Representation of Sigmoidal Membership Function 
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Note: All graphs and visualizations presented in this paper 
were generated using Wolfram Alpha, a computational engine 
known for its precision and symbolic computation 
capabilities. The software facilitated the analytical and 
graphical representation of functions and data involved in this 
study. 
 
8. General Research Methodological Approaches 
8.1 Mathematical Modeling and Formalization [Zadeh, L. 
A. (1975)] [42] 
Purpose: To translate real-world problems into mathematical 
representations using fuzzy sets and fuzzy logic. 
 
Activities 
• Defining relevant fuzzy variables and linguistic terms 

(e.g., “temperature is high,” “speed is moderate”) 
[Zimmermann, H.-J. (2001] [9]. 

• Determining appropriate membership functions 
(triangular, trapezoidal, Gaussian 
[Ross, T. J. (2010)] [43].  

• Formulating fuzzy rules [Driankov, D., Hellendoorn, H., 
& Reinfrank, M. (1996)] [38]. (e.g., “IF temperature is 
high and pressure is low, THEN adjust valve opening to 
medium”). 
Selecting inference methods. 
 

8.2 Computational Implementation and Simulation 
Purpose: Implement fuzzy models in software and simulate 
behavior [Cox, E. (1994)] [45]. 
 
Activities 
• Using Python (e.g., scikit-fuzzy), MATLAB, or fuzzy 

toolboxes [Kaymak, U., & Setnes, M. (2000)] [46]. 
• Simulating various real-world inputs and scenarios 

[Passino, K. M., & Yurkovich, S. (1998)] [47]. 
• Conducting sensitivity analysis [Jang et al., 1997] [34]. 
 
Example: Washing machine fuzzy control simulations [Lee, 
C. C. (1990)]. 
 
8.3 Experimental Design and Data Collection 
Purpose: Collect real-world data for validation [Kosko, B. 
(1992)] [53]. 
 
Activities [Siler, W., & Buckley, J. J. (2005)] [49] 
• Designing experiments to test fuzzy systems. 
• Using sensors, surveys, measurements. 
• Data preprocessing: cleaning, transforming, normalizing. 
 
Example: Traffic signal fuzzy logic control [Chiu, S. (1992)] 

[50]. 
 
7.4. Statistical Analysis and Validation [Pedrycz, W. 
(1993)] [51] 
Purpose: Analyze and validate fuzzy models statistically. 
 
Activities 
• Comparing fuzzy models with traditional/human 

methods. 
• Calculating metrics: accuracy, precision, recall, F1-score, 

RMSE. 
• Hypothesis testing and cross-validation [Zhang, H., & 

Berardi, V. L. (2001)] [52]. 

Example: Fuzzy logic-based stock trading system [Ghosh, B., 
& Nath, P. (2004)] [54]. 
 
7.5. Case Studies and Real-World Applications 
Purpose: Apply fuzzy logic to real-world problems [Raju, G. 
V. S., & Zhou, S. (1994)] [57]. 
 
Activities 
• Implementation in control engineering, decision-making, 

etc. 
• Documenting system development and challenges. 
• Evaluating system impact. 
 
Example: Energy optimization in smart buildings [Kusiak, 
A., Li, M., & Zhang, Z. (2010)] [58]. 
 
7.6. Qualitative Research (Less Common) 
Purpose: Explore human perceptions and use of fuzzy 
systems [Lincoln, Y. S., & Guba, E. G. (1985)] [59]. 
 
Activities 
• Conducting interviews and focus groups. 
• Analyzing qualitative data [Miles, M. B., Huberman, A. 

M., & Saldaña, J. (2014)] [61] (e.g., thematic analysis). 
 

Example: Doctor feedback on fuzzy diagnosis systems 
[Kandel, A. (1992)] [60]. 
 
9. Examples of Research in Fuzzy Sets and Fuzzy Logic 
• Fuzzy Decision-Making: Multi-criteria decision models 

[Bellman, R. E., & Zadeh, L. A. (1970)] [62]. 
Fuzzy Pattern Recognition [Bezdek, J. C. (1981)] [63]: 
Image and speech classification. 

• Fuzzy Data Mining [Pal, S. K., & Mitra, S. (2004)] [56]: 
Fuzzy clustering and association rule mining. 

• Fuzzy Optimization [Herrera, F., & Verdegay, J. L. 
(1995)] [55]: Solving problems with imprecise data. 
 

10. Key Considerations 
• Justification of Fuzzy Approach: Use fuzzy logic for 

vagueness, uncertainty. 
(Zadeh, 1975) [42] 

• Selection of Membership Functions: Data-driven or 
expert-defined. 
(Ross, 2010) [43] 

• Rule Base Design: Ensure completeness and 
consistency. 
(Jang et al., 1997) [34] 

• Validation and Comparison: Use statistical validation 
and benchmarks. 
(Pedrycz, 1993) [51] 

• Interpretability: Ensure transparency for stakeholder 
trust. 
(Cox, 1994; Siler & Buckley, 2005) [45, 49] 

 
11. Conclusion 
Fuzzy sets and fuzzy logic offer a mathematically rigorous yet 
intuitively appealing framework for handling uncertainty, 
imprecision, and partial truths inherent in real-world 
scenarios. Their ability to model vague concepts and emulate 
human reasoning has led to widespread applications across 
engineering, artificial intelligence, decision support systems, 
and control theory. As intelligent systems continue to evolve, 
especially in the domains of explainable AI and soft 
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computing, the role of fuzzy logic is becoming increasingly 
vital. Its interpretability, flexibility, and capacity to integrate 
with other computational paradigms ensure that fuzzy logic 
will remain a cornerstone of intelligent system design and 
decision-making in the years to come. 
 
References 
1. Zadeh LA. Fuzzy sets. Information and Control. 

1965;8(3):338-53. 
2. Bellman RE, Zadeh LA. Decision-making in a fuzzy 

environment. Manage Sci. 1970;17(4):B141-64. 
3. Bezdek JC. Pattern recognition with fuzzy objective 

function algorithms. New York: Springer; 1981. 
4. Herrera F, Cordón O, Hoffmann F, Magdalena L. Genetic 

fuzzy systems: taxonomy, current research trends and 
prospects. Fuzzy Sets Syst. 2011;180(1):76-103. 

5. Zadeh LA. From computing with numbers to computing 
with words. Ann N Y Acad Sci. 2010;929(1):221-34. 

6. Pedrycz W, Gomide F. Fuzzy systems and data analytics: 
ideas and tools. IEEE Trans Fuzzy Syst. 2020;28(5):603-
14. 

7. Dubois D, Prade H. Fuzzy sets and systems: theory and 
applications. New York: Academic Press; 1980. 

8. Ross TJ. Fuzzy logic with engineering applications. 3rd 
ed. Chichester: Wiley; 2010. 

9. Zimmermann HJ. Fuzzy set theory—and its applications. 
4th ed. Berlin: Springer; 2001. 

10. Pal NR, Bezdek JC. On cluster validity for the fuzzy c-
means model. IEEE Trans Fuzzy Syst. 1995;3(3):370-9. 

11. Pan J, Wu Y. A novel hesitant fuzzy decision-making 
method using entropy and similarity measures. Fuzzy 
Sets Syst. 2023;460:1-21. DOI:10.1016/j.fss.2022.07.014 

12. Karnik NN, Mendel JM. Centroid computation for 
general type-2 fuzzy sets using the enhanced Karnik-
Mendel algorithms. IEEE Trans Fuzzy Syst. 
2023;31(1):47-58. DOI:10.1109/TFUZZ.2022.3187765 

13. Zhou L, Zhang W. Multi-criteria group decision-making 
method based on interval-valued intuitionistic fuzzy sets 
and the CoCoSo method. Inf Sci. 2023;623:343-59. 
DOI:10.1016/j.ins.2022.11.047 

14. Liu Y, Li X. A deep fuzzy neural network model for time 
series forecasting with uncertainty quantification. Appl 
Soft Comput. 2024;144:110504. 
DOI:10.1016/j.asoc.2023.110504 

15. Wei C, Deng Y. An improved fuzzy AHP-TOPSIS model 
for evaluating urban sustainability under uncertainty. 
Sustain Cities Soc. 2024;97:104573. 
DOI:10.1016/j.scs.2023.104573 

16. Mendel JM, John RI. Type-2 fuzzy sets made simple. 
IEEE Trans Fuzzy Syst. 2002;10(2):117-27. 

17. Angelov P, Sotirov S. Towards interpretable deep neural 
networks: from fuzzy logic to transparent models. Inf Sci. 
2020;511:340-56. 

18. Jang JSR. ANFIS: adaptive-network-based fuzzy 
inference system. IEEE Trans Syst Man Cybern. 
1993;23(3):665-85. 

19. Mendel JM. Uncertain rule-based fuzzy systems: 
introduction and new directions. 2nd ed. Cham: Springer; 
2017. 

20. Pal SK, Mitra S. Multisource information fusion using 
fuzzy set theory: applications in decision making and 
pattern recognition. Fuzzy Sets Syst. 2004;147(1):129-
41. 

21. Zadeh LA. From computing with numbers to computing 
with words—from manipulation of measurements to 

manipulation of perceptions. IEEE Trans Circuits Syst I 
Regul Pap. 2011;46(1):105-19. 

22. Kim S, Park J, Kim H. A fuzzy logic system for context-
aware decision-making in smart environments. Sensors. 
2020;20(12):3457. 

23. Zimmermann HJ. Fuzzy set theory—and its applications. 
4th ed. Berlin: Springer; 2010. 

24. Klir GJ, Yuan B. Fuzzy sets and fuzzy logic: theory and 
applications. Upper Saddle River: Prentice Hall; 1995. 

25. Mamdani EH, Assilian S. An experiment in linguistic 
synthesis with a fuzzy logic controller. Int J Man Mach 
Stud. 1975;7(1):1-13. 

26. Sugeno M. Industrial applications of fuzzy control. 
Amsterdam: Elsevier; 1985. 

27. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 
1986;20(1):87-96. 

28. Turksen IB. Interval valued fuzzy sets based on normal 
forms. Fuzzy Sets Syst. 1986;20(2):191-210. 

29. Ross TJ. Fuzzy logic with engineering applications. 3rd 
ed. Chichester: Wiley; 2010. 

30. Zimmermann HJ. Fuzzy set theory—and its applications. 
4th ed. Berlin: Springer; 2010. 

31. Klir GJ, Yuan B. Fuzzy sets and fuzzy logic: theory and 
applications. Upper Saddle River: Prentice Hall; 1995. 

32. Halmos PR. Naive set theory. New York: Springer; 1960. 
33. Zadeh LA. Fuzzy logic = computing with words. IEEE 

Trans Fuzzy Syst. 1996;4(2):103-11. 
34. Jang JSR, Sun CT, Mizutani E. Neuro-fuzzy and soft 

computing: a computational approach to learning and 
machine intelligence. Upper Saddle River: Prentice Hall; 
1997. 

35. Nauck D, Kruse R. Neuro-fuzzy systems for function 
approximation. Fuzzy Sets Syst. 1999;101(2):261-71. 

36. Mehta B, Rani R. Fuzzy deep learning: a new approach 
for deep neural networks using fuzzy logic. Neural 
Comput Appl. 2019;31(12):8471-81. 

37. Herrera F, Verdegay JL. Fuzzy sets and operations 
research: perspectives. Fuzzy Sets Syst. 1995;90(2):207-
18. 

38. Driankov D, Hellendoorn H, Reinfrank M. An 
introduction to fuzzy control. Berlin: Springer; 1996. 

39. Cox E. The fuzzy systems handbook. San Diego: 
Academic Press; 1994. 

40. Passino KM, Yurkovich S. Fuzzy control. Boston: 
Addison Wesley; 1998. 

41. Lee CC. Fuzzy logic in control systems: fuzzy logic 
controller—Part I & II. IEEE Trans Syst Man Cybern. 
1990;20(2):404-35. 

42. Zadeh LA. The concept of a linguistic variable and its 
application to approximate reasoning—I. Inf Sci. 
1975;8(3):199-249. 

43. Ross TJ. Fuzzy logic with engineering applications. 3rd 
ed. Chichester: Wiley; 2010. 

44. Driankov D, Hellendoorn H, Reinfrank M. An 
introduction to fuzzy control. Berlin: Springer; 1996. 

45. Cox E. The fuzzy systems handbook. San Diego: 
Academic Press; 1994. 

46. Kaymak U, Setnes M. Fuzzy modeling tools for 
industrial and commercial applications. IEEE Trans 
Fuzzy Syst. 2000;8(4):543-64. 

47. Passino KM, Yurkovich S. Fuzzy control. Boston: 
Addison Wesley; 1998. 

48. Lee CC. Fuzzy logic in control systems: fuzzy logic 
controller—Part I and II. IEEE Trans Syst Man Cybern. 
1990;20(2):404-35. 

https://www.physicsjournal.net/


 

~ 161 ~ 

International Journal of Physics and Mathematics https://www.physicsjournal.net  

49. Siler W, Buckley JJ. Fuzzy expert systems and fuzzy 
reasoning. Hoboken: Wiley; 2005. 

50. Chiu S. Adaptive traffic signal control using fuzzy logic. 
In: Proceedings of the IEEE International Conference on 
Systems, Man and Cybernetics. Piscataway: IEEE; 1992. 
p. 555-60. 

51. Pedrycz W. Fuzzy control and fuzzy systems. Baldock: 
Research Studies Press; 1993. 

52. Zhang H, Berardi VL. A fuzzy logic-based approach for 
the evaluation of manufacturing system flexibility. Int J 
Prod Res. 2001;39(13):2929-51. 

53. Kosko B. Neural networks and fuzzy systems: a 
dynamical systems approach to machine intelligence. 
Upper Saddle River: Prentice Hall; 1992. 

54. Ghosh B, Nath P. Multi-objective fuzzy decision making 
in stock market analysis. Fuzzy Sets Syst. 
2004;142(1):103-20. 

55. Herrera F, Verdegay JL. Fuzzy sets and operations 
research: perspectives. Fuzzy Sets Syst. 1995;90(2):207-
18. 

56. Pal SK, Mitra S. Pattern recognition algorithms for data 
mining. Boca Raton: CRC Press; 2004. 

57. Raju GVS, Zhou S. Adaptive fuzzy logic control of a 
class of nonlinear systems. IEEE Trans Fuzzy Syst. 
1994;2(1):18-31. 

58. Kusiak A, Li M, Zhang Z. A data-driven approach for 
steam load prediction in buildings. Appl Energy. 
2010;87(3):925-33. 

59. Lincoln YS, Guba EG. Naturalistic inquiry. Beverly 
Hills: Sage; 1985. 

60. Kandel A. Fuzzy expert systems. Boca Raton: CRC 
Press; 1992. 

61. Miles MB, Huberman AM, Saldaña J. Qualitative data 
analysis: a methods sourcebook. 3rd ed. Thousand Oaks: 
Sage; 2014. 

62. Bellman RE, Zadeh LA. Decision-making in a fuzzy 
environment. Manage Sci. 1970;17(4):B141-B64. 

63. Bezdek JC. Pattern recognition with fuzzy objective 
function algorithms. New York: Springer; 1981. 

 
 

https://www.physicsjournal.net/

