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Abstract 
This paper presents a numerical solution to the two-dimensional Poisson equation using the finite 

difference method over a square domain. The partial differential equation is discretized using finite 

difference approximations subject to Dirichlet boundary conditions. The resulting system of linear 

equations is solved iteratively to solve potential distributions for various charge configurations. Potential 

distribution and electric field lines of point charge, dipole and quadrupole are simulated in the study. The 

numerical implementation is performed in Python, an open-source programming language. 

 

Keywords: Python, poisson equation, partial differential equation, finite difference method, electric 

potential and field 

 

Introduction  

The Poisson equation is a fundamental partial differential equation. These equations appear in 

various field of physics such as electrostatics, fluid dynamics, head conduction through solids 

etc. [1, 2, 3]. Analytical solutions are only feasible for simple geometries and boundary 

conditions. For more complex domains or when mixed boundary conditions are involved, 

numerical methods are typically used. Modern programming tools such as Python are well-

suited for implementing numerical techniques like finite difference method (FDM). Python’s 

extensive libraries for numerical computation (such as NumPy) and data visualization library 

(Matplotlib) make it an effective platform for modelling and solving partial differential 

equations.  

 

Poisson equation can be derived from Gauss's law [2, 3, 4]. Gauss’s law is written as  

          (1) 

 

where  is the electrostatic field, 𝜌 (𝑥, 𝑦, 𝑧) represents the charge density,  is the 

permittivity of the free space. Electric field can be written as negative gradient of potential (𝑉) 

as  

 

         (2) 

 

Substituting Eq. (2) in Eq. (1), we get 

 

         (3) 

 

Eq. (3) is known as Poisson’s equation. In cartesian coordinates, it can be written as  

 

       (4) 
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In two-dimension, Poisson’s equation is represented as 

 

    (5) 

 

Eq. (5) relates the electric potential at a point in 𝑥𝑦 plane to 

the charge density at that point. In charge free region 

( , eq. (5) reduces to Laplace’s equation.  

 

    (6) 

 

Eq. (5) and Eq. (6) are widely used to solve the boundary 

value problems. These problems involve finding the electric 

field and potential within a domain when certain boundary 

conditions are specified [1, 2, 3, 4]. These conditions define how 

potential and electric field behave at boundary. When 

potential is specified at all the boundaries, the solution of the 

Poisson equation is unique in the domain. This type of 

boundary condition is known as Dirichlet boundary condition. 

In Neumann boundary condition, the normal component of 

electric field (derivative of potential) is specified at the 

boundary. 

This paper deals with numerical solution of two-dimensional 

Poisson equation for computing and visualizing potential and 

electric field near point charges. In the present study, potential 

and field near an elementary charge distribution such as point 

charge, dipole and quadrupole have been investigated. These 

configurations are modelled numerically using finite 

difference method (FDM) to solve Poisson equation in two 

dimensions on square domain [5, 6, 7]. FDM is implemented in 

python. The resulting potential distribution and electric 

field patterns are visualized and analysed to validate the 

numerical technique. 

 

Finite Difference Method 

In this method, computational domain is discretized in a 

uniform two-dimensional grid with a fixed spacing along x 

and y directions. Each grid point is represented as . 

The potential 𝑉  and charge density 𝜌 ) at a 

point  in the domain is written as  and  

respectively. If  and  represent the grid spacing along x 

and y directions then, 

 

 for  

 

 for  

 

 and  are the total number of grid points along  and  

directions respectively. Using central difference scheme, 

partial derivatives can be written as  

 

 
 

 
 

Since derivatives are expressed in terms of the finite 

differences in the values of V at the grid points, this is called a 

finite-difference method [5, 6, 7]. Eq. (5) can be written in terms 

of finite differences as  

 

     (7) 

 

For every point  on the mesh. Setting  for the square grid, Eq. (7) can be written as 

 

      (8) 

 

Eq. (8) holds for all interior points on the grid. It shows that 

the value of potential at each node  is the average of the 

potential at the four neighboring points and contribution from 

local charge density. Thus, second order partial differential 

equation is transformed into a set of simultaneous equations 

one for each interior grid point. The solution set of entire 

system of equations gives us the solution  at each grid 

point. The continuous solution of Eq. (4) is approximated by 

the solution  on the grid point. The accuracy of this 

method is therefore connected to the ability of a finite grid to 

approximate a continuous system, and errors may be reduced 

by increasing the number of grid points [8]. 

An iterative method is used to solve these simultaneous 

equations. An iterative method begins with an initial estimate, 

which is then used to obtain the second approximation. It is 

refined step by step to produce a sequence of improved 

approximations. Each new estimate is derived from the 

previous one, and the process continues until the desired level 

of accuracy or tolerance is achieved. Among the widely used 

iterative techniques are the Jacobi method, the Gauss-Seidel 

method and the Successive Over-Relaxation (SOR) method [5, 

6, 7]. The present study involves the SOR method for the 

computation. 

 

Successive Over-Relaxation (SOR) method 

The basic structure of the Finite Difference Method (FDM) 

often requires a very fine grid to achieve accurate results. This 

fine discretization increases the number of nodes 

significantly, which in turn demands more computational 

storage and a larger number of iterations to reach 

convergence. To accelerate the convergence process, the 

Successive Over-Relaxation (SOR) method is used [5, 6, 7, 8].  

This method improves the rate of convergence by introducing 

a relaxation factor (ω), into the iterative update process. The 

relaxation formula for the new values  in terms of 

old values  can be written as
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Where  is the residual at node  and is defined as  

 
The value of the residual at kth iteration is denoted as 

. It may be regarded as the correction which may be 

added to  to get the values close to the correct value. 

As convergence to the correct value is approached,  

tends to zero. Using the SOR method, the potential at grid 

point after th iteration can be written as  

 

(9) 

 

In SOR method, the relaxation parameter  influences the 

rate of convergence. When  the method is equivalent 

to the Gauss-Seidel algorithm, and values  

corresponds to under relaxation. When 1 < ω < 2 corresponds 

to “overrelaxation” and an appropriate choice of ω can lead to 

faster convergence of the algorithm. When ω > 2, SOR 

method fails to converge. 

The electric field  is the negative gradient of the potential 

. It can be evaluated at all interior points using central 

difference scheme.  

 

 
 

 
 

On the boundaries one sided forward/backward difference 

scheme can be used. 

 

Algorithm  

Algorithm of the computation consists of the following 

steps: 

 Decide the computation domain. Mesh size  is chosen. 

The domain is dicretized into a uniform grid of size 

 including the points on the 

boundary.  

 The simulation is started with initial guess for the 

potential which is represented by a matrix 𝑉(𝑖, 𝑗). 
Boundary values are assigned with fixed potential on the 

edges of the domain. 

 A charge density matrix  is initialized with all 

zero elements to represent distribution of charge on the 

domain is created. The desired charge configuration is 

then assigned by setting the appropriate nonzero vales at 

the specific grid points. 

 Sweep all interior grid points and determine  using 

Eq. 9 for SOR method for iteration. 

 This procedure is iterated a number of times such that the 

potential at each node does not change much in the next 

iteration. 

 The iterative process is terminated when the maximum 

change in potential between successive iterations falls 

below a predefined threshold ( ), 

where  is tolerance. For the present work tolerance is set 

at . 

 Algorithm is implemented in Python. NumPy and 

Matplotlib libraries were used for the computation and 

visualization of the results. 

 

Results and Discussion  

Poisson’s equation is solved numerically using FDM for 

various charge distributions over a square domain of size 1x1 

𝑚2 in 𝑥𝑦 plane. Dirichlet boundary conditions were applied in 

the problem where the electric potential was set to zero along 

all four boundaries. Boundary condition is given by  

 

 
 

To obtain the solution, the SOR method was implemented to 

accelerate the convergence of the iteration process. Program 

was run for various values of relaxation factor  in the range 

of 1.5 to 1.9 to optimize the performance.  

Simulations were carried out for various charge configuration 

including single point charge (monopole), dipole and 

quadrupole. For each charge configuration, equipotential 

lines, surface plot of potential distribution and electric field 

were drawn to visualize the results. Equipotential lines are the 

curves on which potential is constant. Surface plots are the 

three-dimensional representations of the potential. Electric 

fields are perpendicular to the equipotential lines. Strong 

electric fields correspond to packed or dense equipotential 

lines. Electric field vectors show the direction and magnitude 

of the electric field across the domain. 

 

A. Point charge  

For this simulation, a single point charge is placed at the 

centre of the square domain. The charge is modelled with a 

normalized source strength,  𝑉/m2 located at 𝑥 = 

0.5 𝑚, 𝑦 = 0.5 𝑚. The four edges of the region are grounded. 

Since the domain is discrete, we can consider that the node at 

the centre of the domain describes an area around the point, 

and the charge density only exists in this small (but finite) 

area [8]. Solution was obtained for  and system 

converged after 192 iterations. Figure 1 shows the contour 

plot showing equipotential lines of the point charge. 
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Fig 1: Equipotential lines of a point charge at the centre  V/m2 

 

Figure 2 represents zoomed-in contour plot of the potential 

distribution (from 0.4 m to 0.6 m) which focuses on the 

central region of the domain where charge is placed. 

 

 
 

Fig 2: Zoomed-in contour plot of the central region showing the equipotential lines near the point charge 
 

Figure1 show that the potential contours form circular 

equipotential lines in a plane around the charge consisting 

with the radial symmetry as expected for the point charge. 

However figure 2 shows that the equipotential curves are not 

perfectly circular near the charge. This deviation occurs 

because simulation models a point charge placed at the centre 

of a grounded region not a free charge. Because of square 

symmetry of the domain, it acquires a slightly square in shape 

at the edges also. Because of the finite size of the grid, this 

effect is more pronounced near the charge [7]. Figure 3 

illustrates the electric field lines of the point charge. 

The electric field points radially outwards. The electric field 

strength is highest near the charge and decrease with the 

distance from the centre. As observed from contour plot 

(Figure 1), equipotential lines dense near the charge, 

therefore, potential gradient in that region is high indicating 

strong field near the charge. It weakens as it approaches the 

grounded boundaries. 
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Fig 3: Electric field lines of a point charge. 
 

B. Point charge near one edge of the domain 

For this simulation, a charge of strength,  𝑉/m2 is 

considered at the centre (𝑥 = 0.25 𝑚, 𝑦 = 0.5 𝑚) of the square 

domain. The four edges of the region are grounded. Figure 4 

shows the potential distribution around the point in  plane. 

 

 
 

Fig 4: Equipotential lines around a point charge 2 at the near one edge of the domain (x=0.25 m, y=0.5 m). All the four sides 

are kept at zero potential. 
 

Potential distribution is not symmetric due to non-symmetric 

placement of the charge related to the square boundaries. 

Figure 5 Shows the electric field lines near the charge.  
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Fig 5: Electric field lines of a point charge at x = 0.25m, y = 0.5m 

 

The electric field is antisymmetric around the charge. 

Equipotential lines are more packed on the side which is 

closer to the grounded boundary indicating strong electric 

field in that region. Field lines originate from positive charge 

and terminate perpendicularly on the grounded edges. 

 

C. Dipole  

For dipole, two opposite charges are placed symmetrically 

about the centre of the domain. For this configuration, a 

charge of strength,  𝑉/m2 is placed at 𝑥 = 0.4 𝑚, 𝑦 

= 0.5 𝑚 and a negative charge  𝑉/m2 is placed at 

𝑥 = 0.6 𝑚, 𝑦 = 0.5 𝑚 of the square domain. Therefore, dipole 

is aligned along the x-axis. Computation was completed in 

112 iterations with . Figure 6 and Figure 7 show the 

equipotential lines and potential distribution of the dipole. 

 

 
 

Fig 6: Equipotential lines of a dipole symmetrically placed about the centre along x-axis 

 

https://www.physicsjournal.net/


 

~ 115 ~ 

International Journal of Physics and Mathematics https://www.physicsjournal.net  

 
 

Fig 7: Surface plot of potential distribution of a dipole 
 

 
 

Fig 8: Electric field vectors of a dipole 
 

The equipotential lines are symmetric and show two lobes for 

positive and negative potential around positive and negative 

charge respectively. Electric field lines originate from positive 

charge and terminate on negative charge. In surface plot 

(Figure 7) a sharp peak shows the location of positive charge 

and a negative peak appears at the location of negative 

charge. Potential changes rapidly in the near the two charges 

indicating presence of strong electric field in that region. 

Potential slowly decreases to zero near the boundaries. 

 

D. Quadrupole 

For quadrupole, two oppositely oriented dipoles are placed 

symmetrically about the centre of the domain. For this 

configuration, two positive charges of normalized magnitude 

 𝑉/m2 are placed at 𝑥 = 0.4 𝑚, 𝑦 = 0.6 𝑚 and 𝑥 = 

0.6 𝑚, 𝑦 = 0.4 m. Two negative charges of same magnitude 

are placed at 𝑥 = 0.4 𝑚, 𝑦 = 0.4 𝑚 and 𝑥 = 0.6 𝑚, 𝑦 = 0.6 m 

on the square domain with grounded boundaries.108 iterations 

are required to reach the convergence with . 

Figure 9 and Figure 10 show the equipotential lines and 

potential distribution of the quadrupole. 
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Fig 9: Equipotential lines of a quadrupole symmetrically placed about the centre. 
 

 
 

Fig 10: Surface plot of potential distribution of a quadrupole 
 

 
 

Fig 11: Electric field vectors of a quadrupole 
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Equipotential lines show positive and negative lobes placed 

alternatively about the centre. Surface plot shows two positive 

peaks where the positive charges are located and two negative 

peaks where the negative charges are located. At the 

geometrical centre, the potential is nearly zero because of the 

symmetry of the charge distribution. Surface plot shows the 

saddle point at the centre. Around each charge, surface plot 

shows a sharp rise or fall in the potential indicating presence 

of strong electric field. Figure 11 shows the electric field 

pattern near the quadrupole. 

 

Conclusion 

This work presented a numerical simulation of various 

electrostatic charge configurations within a square domain 

with Dirichlet boundary condition using finite difference 

method. The system was iterated using successive over 

relaxation technique to speed up the convergence. Three 

charge distribution are considered for the study, a single point 

charge, a dipole and a quadrupole. In each case potential 

distribution and electric field were computed and visualized. 

The numerical simulation successfully reproduces the 

qualitative features of potential distribution and electric field 

near each charge configurations. The finite grid size and point 

charge approximations distort equipotential lines near the 

charge.  
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