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Abstract 
A generalized nonlinear Schrödinger equation possessing cubic-quintic nonlinear components can be 
used to simulate how ultra-short and femtosecond optical pulses propagate through a nonlinear medium 
with self-frequency shift as well as self-steepening effects. Starting with an extended auxiliary equation 
technique, we find an elliptic differential condition with a fifth-degree nonlinear component that depicts 
the development of the wave amplitude in the metamaterials (MMs) by including an intensity-dependent 
nonlinear chirp anstaz. As a limiting example of the Jacobi elliptic function solutions for the model under 
consideration and taking into account the self-frequency shift as well as self-steepening effects, we 
present a highly rich variety of exact chirped solutions, in particular the solitary wave solutions and 
periodic solutions. The related chirp is governed by the parameters for self-steepening and self-frequency 
shift and is proportional to the intensity of the field, according to the results of the generalized nonlinear 
Schrödinger equation. Parametric conditions for the presence of the traveling wave structures as well as 
the nonlinear chirp associated with each of these solutions are additionally introduced. 
PACS numbers: 42.65Tg, 05.45.Yv. 
 
Keywords: Soliton, generalized nonlinear schrӧdinger equation, metamaterials 
 
Introduction  
In recent years, we have seen a significant increase in interest in optical solitons and wave 
packet propagation in optical waveguides as of its key applications in telecommunication and 
effective signal processing systems. Due to a dynamical equilibrium between dispersive and 
nonlinear effects, they exhibit stable wave forms known as solitons. Solitons only show a 
phase shift and do not change shape when they interact in any number [1]. The cubic nonlinear 
Schrӧdinger (NLS) equation is frequently used to describe the propagation of picosecond 
pulses in Kerr media [2]. For the propagation of subpicosecond or femtosecond pulses, higher-
order effects must be taken into account, and the problem must be stated using various NLS 
equation modifications [3]. Numerous optical materials, such as semiconductors and 
semiconductor-doped glasses, exhibit quantic nonlinearity. The simplest correction to the 
cubic nonlinear term is quantic nonlinearity, which can be observed in many optical materials 
including semiconductors, semiconductor doped glasses, polydiacetylene toluene sulfonate 
(PTS), chalcogenide glasses, and various transparent organic materials [4]. 
In recent times the transmission of nonlinearly chirped solitons in cubic and cubic-quintic 
materials has attracted a lot of attention. These chirped pulses have a number of uses in pulse 
compression or amplification, which significantly improves the design of fiber-optic 
amplifiers, optical pulse compressors, and solitary-wave-based communications connections [5, 

6]. However, it is a difficult task to find chirped femtosecond solitons in nonlinear media since 
they exhibit not only tunable chirp but also chirp-like properties. 
Studies of propagating solitons in higher-order Kerr nonlinear NLS models are also 
significantly more important than studies of the NLS equation's simpler form [7, 8, 9, 10]. It is 
noteworthy that finding accurate solutions, especially solitons for higher-order nonlinear NLS 
models, is crucial because they can help explain a number of important phenomena in optical 
systems. 
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Theoretical Model 
For pulses with at least 100 fs in width, 1 W in power, and a significant GVD [11], third-order dispersion can be ignored; however, 
the effects of self-steepening and self-frequency shift terms remain dominant and should be preserved. Under these circumstances, 
considering the non-linear higher-order NLSE having cubic-quintic form as: 
 

,      (1) 
 
Where,  and  are are the plasma wavelength and normalised time, respectively, and E(z, t) is the complex envelope 

of the electric field. The group-velocity dispersion (GVD) is denoted by the symbol  whilst the cubic, quintic nonlinearity, the 
self-steepening effect, and the self-frequency shift effect are denoted by the symbols  and  respectively. Eq. (1) 
reduces to the standard NLSE, which only includes the GVD and SPM effects, for . For , Eq. 
(1) indicates the modified NLSE, which regulates the transmission of NLSE soliton in the presence of Kerr dispersion. When 

, Eq. (1) changes into the Kaup-Newell equation, sometimes referred to as the derivative NLSE-I. 
Additionally, when  reduces to the cubic-quintic NLSE, which depicts the dynamics of waves in a non-Kerr 
medium with both third and fifth-order susceptibilities. Also, when  Eq. (1) represents the wave propagation in a 
pure quintic nonlinear medium. Exploring the propagation features of envelope solitons in the presence of self-steepening effect is 
fascinating since the latter will drastically alter the physical properties of propagating pulses.  
 We point out that the intensity dependence of group velocity is what causes the self-steepening, also known as the Kerr 
dispersion [3]. Surprisingly, the higher-order effects cannot be ignored when the soliton pulse width approaches ultrashort 100 fs, 
and the influence of self-steepening on optical solitons becomes a significant concern in the optical fibre communication system [2, 

3].  
The model in Eq. (1), with  was used by Scalora et al. [12] to describe pulse propagation in a negative-index material, 
where the sign of the GVD may be either positive or negative. Several bright and dark forms of restricted special solutions to Eq. 
(1) have been identified [13, 14]. 
 
Outlook of Extended Auxiliary Equation method 
Take a nonlinear PDE with the following two independent variables x,t, and q: 
 

,            (2)  
 
Q being polynomial in inderminate q and involving its partial derivatives in which the highest derivatives and the nonlinear terms 
are involved. The main steps of the extended auxiliary equation method [15, 16] can be summarized as follows: 
 
Step 1: We presume the traveling wave transformation: 
 

           (3)  
 
Where k is an arbitrary constant and  is the speed wave constant. Using Eq. (3), thus Eq. (2) reduces to the following ODE: 
 

             (4)  
 
Where R is a polynomial in  and its total derivatives with respect to the wave variable  
 
Step 2: We suppose that Eq. (4) holds the formal solution: 
 

,             (5)  
 
Where  is satisfied the following first order ODE: 
 

         (6)  
 
Where  and  are arbitrary constants that need to be found. 
 
Step 3: In Eq. (5) balance number N is obtained by balancing the highest order nonlinear terms and highest order derivatives of 
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Step 4: To get a system of algebraic equations for , , k and , we replace Eq. (4) 
with Eq. (6), gather all the coefficients of ,) and  and equate them to zero. 
 
Step 5: Using Maple, we solve the system of algebraic equations we acquired in Step 4 to get the values of , 

, k and . 
 
Step 6: It is well-known [13, 14] that Eq. (6) has the solutions: 
 

             (7) 

 
Where the function  could be expressed through the Jacobi elliptic function 

 and so on, where 0 < m < 1 is the modulus of the Jacobi elliptic functions. Using the 12 forms 
of the functions  given by Eq.(7) in [15, 16, 17], we construct the solution of Eq.(2).  
 
Exact chirped traveling and localised wave solutions 
In this case, we're looking for chirped solitonlike solutions to Eq. (1). So, for the complex envelope traveling-wave solutions, we 
select the form:  
 

,            (8) 
 
Where  is the traveling wave coordinate and amplitude  and phase modulation parameter  are real 
functions of . Here , is the inverse velocity with  the group velocity of the wave packet. The corresponding chirp 

(instantaneous frequency shift) is given by , where prime represents differentiation 

with respect to . The real parameter k represents the wave number of oscillatory waves. Substituting Eq. (8) in Eq. (1) and 
separating out the real and imaginary parts of the equation, the coupled equations in A and  read as: 
 

,        (9)  
 
And 
 

.        (10)  
 
Now we adopt an ansatz that depends quadratically on the wave amplitude to solve the above pair of coupled equations as: 
  

,              (11) 
 
Where, respectively  and  stand for the nonlinear and constant chirp parameters. As a result, the chirp that results of the 
form . This suggests that the chirp associated with propagating pulses depends on intensity, with 

 and the chirp that results from linear and nonlinear contributions contains both of them. The relations of the 
chirp parameters and  are further provided by putting the ansatz (11) into Eq. (10) as 
 

            (12) 

 
As a result, the nonlinear chirp parameter's value is mostly determined by the GVD, as well as by the self-steepening and self-
frequency shift coefficients. This suggests that choosing these coefficients can alter the chirp amplitude. As a result, we may say 
that higher-order nonlinear processes like the self-steepening effect are where the nonlinear chirp originates. 
Now, using Eqs. (11) and (12) into Eq. (9), one obtains 
 

           (13) 
 
Where  
 

 .       (14) 
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A differential equation of the elliptic type, Eq. (13), describes how the wave amplitude changes over time in the metamaterial. 
Intriguingly, Eq. (13) becomes a cubic nonlinear equation that allows for both dark and bright solitons if . It can be solved 
for localised solutions via a fractional transformation in the case, When . 
We demonstrate that the equation has a solution of the Lorentzian type for . The  field equation, which is known to 
permit a number of solutions, including bright soliton, dark soliton, kink, double kink, and Weierstrass function solutions of Eq. 
(1), can be converted into Eq. (13) in the most general case, when all the coefficients have nonzero values. However, finding new, 
precise soliton solutions to this equation remains a vital task in mathematical physics. 
The diversity of dynamics in nonlinear MMs regulated by the model under discussion is illustrated in this work by the range of 
traveling and localised solutions, present for various parameter settings. We also shown the chirping associated with these 
structures.  
In this section, we provide precise analytical chirped soliton solutions for the NLSE (1). The solutions nontrivial phase chirping, 
which varies as a function of intensity due to the Kerr dispersion factor, will be demonstrated. 
In Eq. (13) we derive the balance number  by balancing the variables  and . We consider the transformation since 

the balance number is not an integer as: 
 

.             (15) 
 
Substituting Eq.(15) into (13), we have the new equation: 
 

         (16) 

 
By balancing  with  in Eq.(16), we have . From Eq.(5), the formal solution of Eq.(16) has the form: 
 

,           (17) 
 
Where  satisfies Eq.(6), while  are arbitrary constants to be determined. Consequently, we get  
 

,      (18)  
 

  (19)  
 
Substituting Eqs.(17)-(19) into Eq.(16), we are with a system of algebraic equations through considering the coefficients of each 
exponent of of  and equating them to zero. 
Solving thissystem of algebraic equations with the aid of Maple, we obtain the following result: 
 

      (20)  

 
Substituting Eq. (20) into Eq.(17) along with Eqs.(15) and (7), we get the following solutions of Eq.(13): 
 

,            (21)  

 
where 0 < m < 1 is the modulus of the Jacobi elliptic functions,  and so on may be used to 
create the function , trigonometric and hyperbolic functions are the degenerate forms of the Jacobi 
elliptic functions, respectively. 
The Jacobi elliptic functions for Eq. (13) are given by 
 

Type 1: If , then  

 

       (22) 
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        (23) 

 
If m = 1, then , and hence Eq. (13) has the hyperbolic function solutions 

       (24) 

 

       (25) 

 
and the corresponding chirping terms are given by 
 

       (26) 

 

       (27) 

 

Type 2: If , then  

 

       (28) 

 

        (29) 

 
If m = 0, then , and hence Eq. (13) has rational and the periodic wave solutions 
 

           (30) 

 

       (31) 

 
and the corresponding chirping terms are given by 
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           (32) 

 

       (33) 

 
If m =1, then , and hence we have the same hyperbolic function solutions (24) and (25). 
 

Type 3: If , then  

 

       (34) 

 

       (35) 

 
If m = 1, then , and hence Eq. (13) has the hyperbolic function solutions 
 

       (36) 

 

           (37) 

 
and the corresponding chirping terms are given by 
 

       (38) 

 

           (39) 

 

Type 4: If , then  

 

       (40) 
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       (41) 

 
If m = 0, then , and hence Eq. (13) has solutions 

          (42) 

 
and the corresponding chirping terms are given by 
 

         (43) 

 

Type 5: If , then  

 

        (44) 

 

       (45) 

 
If m = 0, then , and hence Eq. (13) has the periodic solutions 
 

       (46) 

 

       (47) 

 
and the corresponding chirping terms are given by 
 

       (48) 

 

       (49) 
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Type 6: If , then  

 

       (50) 

        (51) 

 
If m = 0, then , and hence Eq. (13) has rational solutions 
 

          (52) 

 
and the corresponding chirping terms are given by 
 

         (53) 

 
If m =1, then , and hence we have the same hyperbolic function solutions: 
 

       (54) 

 

           (55) 

 
and the corresponding chirping terms are given by 
 

       (56) 

 

           (57) 

 
Results and Discussions  
We have shown a few graphs showing the exact solutions in this section. These solutions are periodic, hyperbolic and 
trigonometric solutions. Different nonlinear waves are described by exact solutions of the results. Specialised types of solitary 
waves solutions are established accurate solutions with hyperbolic solutions. These solutions have the amazing quality of 
maintaining their identity as they interact with one another. 
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Fig 1: Intensity and corresponding chirp profile of the kink solitary wave solution given by Eq.(24) for the choice of parameter values 
mentioned in the text. 

 

 
 

Fig 2: Intensity and corresponding chirp profile of the anti-kink solitary wave solution given by Eq.(24) for the choice of parameter values 
mentioned in the text 

  

 
 

Fig 3: Intensity and corresponding chirp profile of bright soliton Eq. (36) for the choice of parameter values mentioned in the text 
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Fig 4: Intensity and corresponding chirp profile of dark soliton Eq. (36) for the choice of parameter values mentioned in the text. 
 
To show the dynamic behaviors of some acquired solutions, we have plotted some of them in Figs. 1-4. The intensity profile of 
kink (+ sign) or anti-kink(-sign) soliton Eq.(24) is depicted in Figs. 1 and 2 by utilising the following model parameter values 

 and c=1. The corresponding chirping for kink or anti-kink soliton Eq.(26) is 
depicted at z=0 for plus and minus sign, respectively. 
We noticed from the intensity profiles of the chirped solitary wave solutions that the nonlinear chirp is exactly proportional to the 
wave's intensity and that the self-steepening and self-frequency shift parameters may be changed to alter the amplitude of the 
chirped solitary wave solution. The statistics make it very evident that the chirping for the bright soliton is highest near the centre 
of the pulse, whereas it is smallest for the dark soliton. 
 
Conclusions  
These exact solutions are modelled as hyperbolic or trigonometric functions when the modulus of the Jacobi Elliptic function is 
equal to one or zero, respectively. In this work, we have shown that the competing cubic-quintic nonlinearities can be solved by 
unique forms of Jacobi elliptic function solutions for the nonlinear cubic-quintic Schrodinger equation with self-steepening and 
self-frequency shift effects, as well as bright (dark), soliton-like kink (anti-kink), and periodic solitons. We have identified the 
parameter domains for these optical solitons' existence, which may be useful for long-distance communication networks. Our 
research is original and has never been published before. Last but not least, we verified using Maple that every single solution 
discovered in this study fulfils the original equations. 
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